The Drake Equation

We have learned that:
Organic molecules are common
Life arose fairly quickly on Earth, probably several times
Life can thrive in extreme environments
Planets are not rare
There are lots of stars in our galaxy
This suggests that there may be (other) intelligent life in our galaxy.
How can we discuss this possibility in a rational way? What things must we consider?
The Drake equation addresses (not answers!) the question:
How many civilizations exist in our galaxy with whom we could communicate?
One revised form of the Drake equation, based on Goldsmith and Owen:
$\mathrm{N}=\mathrm{N} * \mathrm{f}_{\mathrm{p}} \mathrm{N}_{\mathrm{p}} \mathrm{f}_{\mathrm{l}} \mathrm{f}_{\mathrm{i}} \mathrm{L} / \mathrm{L}_{\mathrm{g}}$
Where N is the number of civilizations in the galaxy that we can communicate with.

Goldsmith \& Owen's Drake Equation Evaluation:
$\mathrm{N}_{*}=\#$ stars $=300$ billion
$\mathrm{f}_{\mathrm{p}}=$ fraction of ok stars w/ planets $=\mathrm{F}, \mathrm{G}, \mathrm{K}$ stars $=1 / 200$
$\mathrm{N}_{\mathrm{p}}=$ \# suitable planets per star $=$? ~ 1
$\mathrm{f}_{\mathrm{l}}=$ fraction $\mathrm{w} /$ life \sim ? $\sim 1 / 2$
$\mathrm{f}_{\mathrm{i}}=$ intelligence and communication $=$? $\sim 1 / 3$
$\mathrm{L}=$ lifetime of a civilization = ??? $=\mathrm{L}$
$\mathrm{L}_{\mathrm{g}}=$ lifetime of galaxy $=10$ billion years
and so $\mathrm{N}=\mathrm{L} / 40$

Following Goldsmith \& Owen, if the lifetime L of a civilization that wants to communicate is:
$\mathrm{L}=100$ years, then $\mathrm{N}=$ only 2 or 3 civilizations in our entire galaxy
$\mathrm{L}=1000$ years, $\quad \mathrm{N}=25$
$\mathrm{L}=150$ million years, $\mathrm{N}=3.75$ million civilizations in our Milky Way

Astr310's Drake Equation Evaluation:
$\mathrm{N}_{*}=\#$ stars $=300$ billion
$\mathrm{f}_{\mathrm{p}}=$ ok stars w/ planets $=\mathrm{F}, \mathrm{G}, \mathrm{K}$ star $=1 / 200$
$\mathrm{N}_{\mathrm{p}}=$ \# suitable planets per star = ?
$\mathrm{f}_{1}=$ fraction $\mathrm{w} /$ life $=$?
$\mathrm{f}_{\mathrm{i}}=$ intelligence and communication $=$?
$\mathrm{L}=$ lifetime of a civilization $=$?
$\mathrm{L}_{\mathrm{g}}=$ lifetime of galaxy $=10$ billion years
$\mathrm{N} \sim 1 / 6(\quad)=\quad$ civilizations

Optimist's Drake Equation Evaluation:

$\mathrm{N}_{*}=\#$ stars $=400$ billion
$\mathrm{f}_{\mathrm{p}}=$ ok stars w/ planets $=\mathrm{F}, \mathrm{G}, \mathrm{K}$ star $=1$
$\mathrm{N}_{\mathrm{p}}=$ \# suitable planets per star $=3$
$\mathrm{f}_{1}=$ fraction w/ life ~ 1
$\mathrm{f}_{\mathrm{i}}=$ intelligence and communication $=1$
$\mathrm{L}=$ lifetime of a civilization = ??? $=\mathrm{L}$
$\mathrm{L}_{\mathrm{g}}=$ lifetime of galaxy $=10$ billion years
$\mathrm{N}=120 \mathrm{~L}!!$

Pessimist's Drake Equation Evaluation:

$\mathrm{N}_{*}=$ \# stars $=200$ billion
$\mathrm{f}_{\mathrm{p}}=$ ok stars $\mathrm{w} /$ planets $=\mathrm{F}, \mathrm{G}, \mathrm{K}$ star $=1 / 1000$
$\mathrm{N}_{\mathrm{p}}=$ \# suitable planets per star $=1 / 10$
$\mathrm{f}_{1}=$ fraction $\mathrm{w} /$ life $\sim 1 / 200$
$f_{i}=$ intelligence and communication $=1 / 100,000$
$\mathrm{L}=$ lifetime of a civilization = ??? $=\mathrm{L}$
$\mathrm{L}_{\mathrm{g}}=$ lifetime of galaxy $=10$ billion years
$\mathrm{N}=\mathrm{L} / 10$ billion !!

Closing thoughts on the "Drake Equation":

1) does not tell us how many civilizations there are, but it is a starting point for discussion
2) estimates range from zero to hundreds of millions in our galaxy
3) this applies to only one galaxy of the billions that exits.
