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Abstract

A recent publication has suggested a method to determine the masses and radii of the components of an eclipsing
system using only a light curve and radial velocities of one component. If true, this would have immediate impact
in expediting the study of transiting extrasolar planet and brown dwarf systems. The method is intended for
situations where the mass ratio is significantly different from zero, but implicitly also requires the assumption that
the mass ratio is negligible. We investigate both cases, finding that when the mass ratio is significant the method is
mathematically identical to existing approaches, and when the mass ratio is negligible the equations become
undefined. We therefore conclude that the method cannot be used to measure the physical properties of such
systems from observations alone.
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1. Introduction

Eclipsing binary stars for which radial velocities can be
measured for both components are vital objects in stellar
astrophysics, as the masses and radii of the components can be
determined using only quantities directly measurable from light
and velocity curves (Stebbins 1911; Andersen 1991; Torres
et al. 2010). For eclipsing systems for which radial velocities
can only be measured for one component (typically defined to
be the primary component), this is not possible because one no
longer has access to one of the quantities measured from
observations (specifically the velocity amplitude of the second-
ary component). Examples of such eclipsing systems include
low-mass eclipsing binaries (e.g., Fernandez et al. 2009),
transiting brown dwarfs systems (e.g., Anderson et al. 2011)
and transiting planetary systems (e.g., Torres et al. 2008).

Transiting planets have been the subject of extensive work in
recent years, and several methods have been developed to
provide the additional constraint required due to our inability
to measure their physical properties directly. These include
using predictions from theoretical stellar evolutionary models
to constrain the properties of the host star (Cody &
Sasselov 2002; Sozzetti et al. 2007; Southworth 2009),
applying an empirical mass–radius relation to the host star
(Seager & Mallén-Ornelas 2003; Southworth 2009; Enoch
et al. 2010; Southworth 2011), characterizing the host star
using asteroseismology (e.g., Silva Aguirre et al. 2015) and
measuring Doppler boosting and ellipsoidal variations (e.g.,
Esteves et al. 2013; Faigler et al. 2013).

Montet et al. (2015, hereafter M15) recently presented a
thorough and comprehensive study of the transiting brown

dwarf system LHS 6343, originally discovered using photo-
metric data from the Kepler satellite (Johnson et al. 2011).
LHS 6343 contains a 62 MJup brown dwarf orbiting a 0.36

M M-dwarf every 12.7 days. M15 presented a new method
to determine the physical properties (specifically the masses
and radii) of the two components of the system, which uses
only quantities directly measurable from the light curve and
radial velocities of the primary component. M15 found this
method to work for systems where the mass ratio is not
negligible and to allow the additional constraint to be
bypassed. On closer inspection, the method requires two
assumptions which are in mutual conflict: that the mass ratio
be negligible and that the mass ratio be significantly different
from zero. It is the purpose of the current work to investigate
the method and determine the types of systems to which it
may be applicable.

2. Retracing the Method

2.1. Basic Equations

In this work, we consider two spherical bodies which are
orbiting each other. Keplerʼs Third Law can be written as
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where P is orbital period, a is semimajor axis, G is the
Newtonian gravitational constant, and M1 and M2 are the
masses of the two bodies. By convention we expect >M M1 2,
and for extrasolar planets we can also write M M1 2.
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The definition for mean density of a body is
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where R is the radius of the body in question.
Combining Equations (1) and (2) leads to an important

result:
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where =q M

M
2

1
is the mass ratio. This equation shows that the

density of the primary object can be obtained as a function of a
few physical constants (G and π), parameters determined from
the light curve (P and ;a

R1
see Russell 1912 and Seager &

Mallén-Ornelas 2003) and q. In the case of transiting planets
one can further simplify this by assuming »q 0, in which case
r1 can be obtained purely from observed quantities:
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An alternative approach to this approximation can be
obtained by substituting the density of the secondary object
into Equation (3) to find
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is the ratio of the radii of the two object. In the

case of transiting planets one can apply the approximation that
R R2

3
1
3 and thus »k 03 , in which case Equation (5) reduces

to Equation (4) above (see Winn 2010).

2.2. The Method Introduced By M15

M15 defined two parameters, c1 and c2, which can be
combined to determine the masses of the two bodies. The
quantity c1 comes from Equation (3) above and is
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The parameter c2 is very closely related to the mass function:
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(e.g., Hilditch 2001; Roy 2005) where K is the velocity
amplitude of the primary object and e is the orbital eccentricity.
The definition of c2 by M15 is
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c2 and f M M,1 2( ) are practically equivalent for the systems we
are considering here, because the high orbital inclinations

required for transits to occur mean that »isin 1. The orbital
inclination is also normally obtained to good precision from
modeling the transit light curve, so the quantity isin is precisely
known.
From Equations (6) and (8) it follows that the masses of the

two objects can be expressed as:
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From these quantities and the measured r1 and k, the full
physical properties of the system can be determined.

2.3. Can This Method Be Applied?

In applying this approach to the analysis of a typical
transiting planet or brown dwarf system, one would calculate c1
and c2 and then M1 and M2. The equation for c1 (Equation (6))
includes the density of the primary object. This can be
determined from the light curve alone, but only under the
assumption that »q 0 and therefore that Equation (4) is
applicable. One then finds
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When applying this result to Equations (9) and (10), we find
that - =c 1 01( ) and therefore the masses of the two
components are undefined.
It is clear that the method breaks down once one adopts the

approximation that »q 0. The method is therefore only useful
if a measured value for q is available, in which case one could
use standard equations to achieve the same results. The method
is therefore valuable only in that it provides a convenient way
to determine the masses of the objects from observations and a
known mass ratio; it cannot provide the masses from only
observable quantities.

3. Discussion

A method was recently presented for measuring the masses
and radii of a transiting brown dwarf system based purely on
parameters measured directly from a transit light curve and
radial velocities of the host star. We have investigated this
method and found that the situation divides into two regimes.
Mass ratio is negligible. This assumption is fundamental to

the method proposed by M15, as it allows an approximation for
the stellar density to be used and therefore the system of
equations to be established. However, the assumption of a
negligible mass ratio also leads to singularities in the equations
which render them unusuable. We therefore refute the claim
that “if the Doppler semiamplitude is known, the stellar mass
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can be measured exactly” (M15, see the second paragraph of
the Appendix, paragraph 2).

Mass ratio is not negligible.M15 do identify an issue with
the equations becoming undetermined at low mass ratios,
and in other parts of their work (e.g., see the Appendix,
paragraph 13) mention that the adoption of a mass–radius
relation of the form µM Rx

1 , where x is a real number
typically around 3.0, allows the properties of the system to be
obtained. This is the same approach as originally outlined by
Seager & Mallén-Ornelas (2003) and used with slight
modification by Southworth (2009). In this regime, the method
of equations is equivalent to most existing approaches used for
determining the physical properties of transiting planetary
systems, with all the same advantages and disadvantages of
those approaches.

We therefore conclude that the method is only applicable in
a subset of situations, in which case its performance is
identical to many other mathematical prescriptions for
measuring the properties of transiting planetary systems. An
additional constraint beyond those obtained from modeling
light and velocity curves is needed in all situations. A set of
equations that make the impact of the additional constraint
clear and quantifiable can be found in Southworth (2009,
Section2.1).
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