

Rossiter-McLaughlin Effect

- 1. What is it?
- 2. What use is it?
- 3. Can we use it to find an Earthsize planet?

Rossiter-McLaughlin Effect:

Effect is large because stellar rotation $V_{rot} \sin i$ is <u>very</u> large compared to reflex orbital velocity: km/s vs. m/s

Stationary star has zero net velocity due to exquisite balance of large (+) and (-) velocity elements.

In a sense, the transit is removing absorption.

<u>Rossiter-McLaughlin Effect</u> <u>2. What use is it?</u>

Stellar Characteristics

- R-M effect very sensitive to stellar rotation
- R-M effect sensitive to stellar limb darkening
- Measure the obliquity (mis-alignment of the spin-orbit axes)

Assist in discovering planets

 HD 189733 (Bouchy et al. 2005) first transit discovered spectroscopically before photometrically

Q: Can an <u>F</u> arth-size planet be detected via the RM effect?				
Consider: $R_*=R_{\odot}$ $M_*=M_{\odot}$ a=1AU i=90° $M_p=M_{Earth}$ $V_{rot} \sin i= 3-5$ km/s and $R_p\sim 1-2$ R_{Earth}				
photometric signal:	8x10 ⁻⁵	need space obs.		
star orbital radial vel:	0.09 m/s	tiny!		
RM amplitude:	0.1-1.0 m/s	interesting!		
Worthy of a realistic simu	lation			

Simulation

- <u>Stellar variability</u> is the dominant noise, not observational Poisson (photon) noise
 - I. Stellar pulsations (periodic)
 p-mode oscillations; period ~few min; amp ~0.1 m/s
 - II. Stellar random "burbling" (red noise)
 - random walk-like (1/f to $1/f^2$ power spectrum)
 - due to convection, granulation, microflares, spots, etc.
 → "weather"

Simulation Details: I. Oscillations

• p-mode oscillations: (n, l = integer radial, angular modes) frequency of sinusoids =

 $v_{n,\ell} = \Delta v (n + \ell/2 + \varepsilon) - \ell (\ell+1) D_0$

- $\Delta v \rightarrow$ mean density $D_0 \rightarrow$ sound speed near core $\epsilon \rightarrow$ surface layers
- n = 17-32 $\ell = 0,1,2,3$ \rightarrow total of 60 sinusoids
- strongest amplitude $v_{\text{peak}} = 0.2 \text{ m/s}$
- individual amplitudes = 0.0-0.2 m/s (random) x Gaussian drop-off away from v_{peak}
- mode lifetime= 3 (v / v_{peak}) days
- phase drift = random walk $\Delta \phi = 2\pi$ in lifetime
- compute with $\Delta t=12$ s

Simulation Details: II. "Burbling"

• Random walk generated using first order autoregressive (AR) process: $v(t_i) = \alpha v(t_{i-1}) + \epsilon_i$ ϵ_i = white noise

filter coefficient $\alpha = 0.995$

• gives red power spectrum with $P(f) \sim f^{-1.5 \text{ to } -2}$

Then normalize RMS of oscillations + red noise = 0.5 m/s

Simulation Details: Observations

- Match stability predictions of *HARPS*, but on a 10-m telescope
- V=9 mag
- bin to $\Delta t = 60 \text{ min}$
- add observational noise per bin = 0.25 m/s
 insanely optimistic??

Note: transit duration ~ 13 hours

The HARPS search for southern extra-solar planets. I. HD 33075 b: a new "Hot Jupiter"

- Pepe et al. 2004 A&A 423, 385

The short-term precision performance of HARPS has been characterized on the sky by intensive asteroseismology observations carried out during the instrument commissioning phase (Mayor et al. 2003). The observations proved that <u>on short time-scales (one night) the precision is better than 0.2 m s^{-1} *rms* and mainly limited by photon noise and, in particular, by the intrinsic stability of the star itself. Besides tracking the in-</u>

* night-to-night wavelength calibration stability is a problem of ~0.8 m/s

Simulation Details: Observations

- Match stability predictions of *HARPS*, but on a 10-m telescope
- V=9 mag
- bin to $\Delta t = 60 \text{ min}$
- add observational noise per bin = 0.25 m/s
 only slighly crazy!
 - not out of the question for a "super HARPS"

Note: transit duration ~ 13 hours

Results				
	R _{planet} / R _{Earth}			
<u>Vrot sin i</u>	1	1.5	2	
3 km/s	No	No		
4 km/s	No		Y	
5 km/s	No	Y	Y	

Results

A terrestrial-size planet transit is (barely) detectable with current technology.

- Stellar pulsations average out.
- Low freq red noise does NOT average away; special filtering may help.
- Would be *easy* for a Jupiter-size planet (a "warm Jupiter")

<u>Results</u>

Not a way to find planets, but a valuable method to confirm terrestrial-size planets at 1AU found other ways, e.g. **Kepler**

The only method??

Other Considerations

- + easier for A+F type stars (Gaudi & Winn 2006)
- more difficult if power spectrum is redder (i.e. if A-R α is closer to 1.000)
- + RM velocity shift of *line profile* is larger than centroid shift of *rotation kernel*; observed amplitude will be larger than these simulations (helps offset the overly optimistic *i*=90⁰)

Conclusion

The Rossiter-McLaughlin effect can help confirm suspected Earth analog planets.

- Motivation for a 30-m telescope!
- Gas-giant planets are easy!
- Still some puzzles to solve

Conclusion

The Rossiter-McLaughlin effect can help confirm suspected Earth analog planets.

- Motivation for a 30-m telescope!
- Gas-giant planets are easy!
- Still some puzzles to solve

Using the Rossiter-McLaughlin effect to measure stellar obliquities

Tells us about planet formation & migration history:

- Aligned is what we expect if planets formed in a co-planar disk.
- Mis-aligned if there is planet scattering.

RESULTS:

Several dozen systems investigated.

- Many are aligned, but many are not
 → scattering is important
- Tendency for the planets around hotter stars to be less aligned with the stellar rotation axis
 - → less convection in stellar envelope
 - \rightarrow less efficient tidal torques