N\, Introduction to CCDs and
"\, CCD Data Calibration
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| 2. Moonlight, twilight, sky emission,
light pollution, and scattered light in
the telescope is exactly the same

=» identical background light







If these conditions are met,
then simultaneous differential
(relative) aperture photometry will
allow atmospheric fluctuations™ to
be canceled out.

Relative flux = target star / comp star

(*) thin clouds, change in transparency,
change in sky brightness, change in
airmass, etc.



If these conditions are mostly met,
then simultaneous differential
(relative) aperture photometry will
allow atmospheric fluctuations™ to
be mostly canceled out.

Precision of ~ 0.00021 (0.021% or
210 ppm) can be reached with
ground-based telescopes in 150 s
exposures.

(Tregloan-Reed J., Southworth J., 2013, MNRAS, 431, 966)



CCD: “charge coupled devices”

integrated circuit silicon chips that
can record optical (and X-ray) light



pixel = “picture element”
= Independent light detectors

each pixel must be calibrated — no two
are the same.
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Figure 1

CCD pixels are amazingly small:
typically 5-25 microns wide.



'- ll[l fll‘O_-f = abili
~set by physics (diffraction) and optice
quality = 0=1.22 1/D

e.g. 0.14 arcseconds for a 1-m
telescope

— not set by the CCD (unless the CCD is
not matched to the camera).



Resolution improves with the
diameter of the optics

Figure 3-13
Discovering the Universe, Seventh Edition
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up to a point...



high-speed video of scintillation (“seeing”)




| ‘output |s
range; For f|Im this is true only for a sm

* measure target, background (sky), and comparison
:, | objects simultaneously
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Figure 7. (top) Spectral response for different silicon thicknesses: (boftom) Lick/LBNL measure-
ments. Courtesy of e2v technologies.




Typical spectral response deep depletion, basic -100C
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Figure 6. Examples of CCD responses with antireflection coatings optimized for different wavelength
regions.
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Schematic CCD input/output relationship

saturation

non—linearity

output linearly proportional to input

slope = 1/gain

bias offset level

Input photons (or electrons)




Note: Photomultipliers still win if very
high speed is needed: exposures
<< 1sec (e.qg.for pulsars)

Photographic film sometimes used if
very wide images are needed
(CCDs are only ~1 inch wide), but
a mosaic of CCDs is preferred
(though very expensive).



Kepler Focal Plane — 42 CCDs




CCD Data Acquisition

1) Photon knocks free an electron in the
silicon via the photoelectric effect.

2) CCD electronics transfer e- to an
amplifier; charge is measured &
digitized, then stored in a file:

photon - e > ADU - .fits file

“ADU" = analog-digital-unit
or equivalently, a “DN” (data number),
or simply a “count”.
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Figure 1: - Photon Interactions with Silicon




To increase the response of the sensor, the
backside of the wafer is thinned to very small
depths (~10-15um). With the proper thinning,
the CCD is then illuminated from the backside
and UV and blue response is increased
significantly. Thinning is restricted to FF and
FT architectures without VOD structures. The
difficulty in thinning the device to such depths
leads to lower vyields and higher costs.
Handling becomes extremely difficult as well.
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Figure 20: Thick and Thinned CCD
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Three Phase CCD Clocking Scheme
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Figure 1. Depiction of the cross section of a three-phase CCD



Depletion
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|
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Figure 2. Cross section of a CCD depicting the depletion layer and the neutral undepleted layer at
the back surface and its effects on photoelectron charge collection.
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Aside: Color and CCD images

RGB “Bayer” mosaic of a CCD for color images



Incoming lhight

Filter layer

Sensor array

Eesulting pattern
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Normal color 1images are much lower
resolution than black and white.



Interpolation 1s used to fill-in the gaps.



“true” image







reconstructed color image
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CCD gain typically ~ 1-10 e-/ADU

his means it takes 1-10 photons to
~ generate 1 “count”.




Schematic CCD input/output relationship

saturation

non—linearity
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" output linearly proportional to input
|slope = 1/gain |

bias offset level

Input photons (or electrons)




Bit Depth and Gray Levels in Digital Images
2 Bit 4 Bit 6 Bit T Bit 8 Bit 10 Bit

n
.

128 266

4 16 64
(Bit Depth)

16-bit A/D converter allows 216 = 65,536 discrete levels
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~ To be maximally useful, we need to

carefully calibrate the CCD.






Dark Noise

Thermal fluctuations can knock an e- free,
and this acts just as if a photon knocked
it free.

* Depends on the exposure duration.

» Can be greatly reduced by cooling the
CCD.

» Using liquid N, can make dark noise
negligible: < ~0.02 e-/s/pix

» Dark current is important if the CCD is
not cold, as in amateur CCDs.




Dark Noise versus Temperature

Figure 2
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Dark Current of e2v CCDs
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Cosmic Ray Noise

Cosmic rays (particles from solar flares, AGN,
supernovae, etc.) and their spallation shower
products can ionize the Si atoms in a CCD and
create a false signal.

Radiation from the Earth can do this too (e.qg.
naturally radioactive granite).

Cosmic rays/radiation events are usually very
strong and easy to see.

Cosmic rays are usually the limiting factor in the
duration of a CCD exposure.



- added: the bias level.
~ Bias is ~ few hundred ADU.

. CCD output = (input photons / gain) + bias

&
i
¥



Bias level must be measured and subtracted
from the CCD image. Three ways to do this:

1) Zero second exposure w/ shutter closed
(called a ® " or a “zero frame”)

2) Extra imaginary pixels can be read and their

blas measured: “overscan’ (this is like continuing
to shift and read even if no buckets are left)

3) Dark frames automatically contain the bias
offset level.
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Schematic CCD input/output relationship

saturation

non—linearity

output linearly proportional to input

slope = 1/gain

bias offset level

Input photons (or electrons)




Flat Fields

CCDs have several million nearly independent
detectors, and they all must be calibrated to
the same sensitivity.

Variations are caused by slight variations Iin
pixel size, thickness, coating, impurities, efc.
Differences of a few % are common.

To calibrate these differences, we use flat field
iImages.



(Dust on a filter is very out of focus and
looks like a donut).










- - Each pixel should record the same
~ brightness; but they don’t because
of pixel-to-pixel variations.




To calibrate the CCD science image,
you divide by the flat field image.

When you divide by the flat, these
defects disappear.

To keep the output proportional to the
input, the flat field image is
normalized to have a mean = 1.0,
so dividing by the flat does not
change the fluxes or statistics.



Because the dust can change,
flatfield calibrations must be taken
every night.
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Raw image => Corrections

W stee A SR org



=> Final image



Calibrated Image ==
(raw image — bias) / sensitivity




CCD Calibration

To help cancel random noise and
reject cosmic rays, take a bunch
of calibration images, combine
them and use the median value
for each pixel

The combined calibration image is
often called a * " Image.



— Zero.fits) / NFlat.fits

(for non-LN2 cooled CCDs, replace bias with dark)










M63 10x300s Lights Only M63 10x300s Lights+Darks+Flats+Bias

Figure 27. The galaxy Messier 63 with no corrections (left) and with the full Dark, Bias and Flat correction (right).
Lights (Skys): 10x300s: Darks: 3x300s; Flats: 20x1.5s: Bias: 13x0.001s (Credit Jason Melquist)




eep the guiding close to perfect: keep the
cent o light from wanderlng more than a
sma i action of a pixel. This is how Kepler

es such high precision.
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Iér plxel matters. You average out an
-plxel sensitivity variations.

is works well for bright, isolated stars.

u
{ éd idea for faint stars or crowded fields.
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" e.g., Moon, twilight, light pollut

' Nor are these constant — they change

~ throughout a night.



We measure the sky brightness, and
we measure nearby “comparsion
stars”.




(Star+sky) — Sky = gtar on




2 e

star + sky

a\{neasured here

.. Aperture
(radius=13)

\T’l
'sky
/ measured
here
Annulus
(radii = 14 to 29)
o




Calibrated star =
(star — sky) / (comparison star — sky)



\ hus
il § alibrated target star =
(target star — sky) / <comparison star>




WASP-2 light curves (2016 Oct 21 UT) R-band

"raw" light curves of target star -and comparision stars
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median sky flux

sky brightness (2016 Oct 23 UT; R-band @ MLO)

annulus = 15-40 pix ; 7 sec exposures
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WASP-2 (2016 Oct 23 UT; R-band @ MLO)
aperture = 7 pix
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differential flux

WASP-2 (2016 Oct 23 UT; R-band @ MLO)

aperture = 7 pix ; 75-point sliding median
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WASP-2 (2016 Oct 23 UT; R-band @ MLO)

aperture = 7 pix ; 75-point sliding mean

JD_UT

I ‘hi ’I h’"’.!‘l‘!,: ‘ | :
- M 'l 'IH il U WL "u h|' I fii ‘ il ]
_— I ||I|' ll' Il' ! I " 'w '||[' 1|| jll ||r'|||lf|l| 'l ' | |} __
: | N il ! Vﬂ :
u ||||} ' ! I -
B ||||, ||||I . | ’ ._'!!‘ || ' TW -
: li] ‘ ' i Ly m ||‘| I !’ :
_ Il."i""“""""‘ i Jik i |
- 'I“J gL \ li‘i'"’ ||||‘ -
i | | | | | | | | I l ' | ' |
2457684.65 2457684.70 2457684.75



WASP-2 (2016 Oct 23 UT; R-band @ MLO)

aperture = 7 pix ; 75-point sliding mean
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Sky/Pixel_T1 - 5E-3 (normalized)
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rel_flux_T1 - 5E-3 (normalized)
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And, at some point, the ADC
electronics saturates.




~ Combination of the gain and A/D
- converter limits the saturation level.




[Mustrative CCD input/output response curve

Poisson noise (grows as sqrt of input)
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readout noise (independent of input) slope = 1/gain

bias offset

Input photons (or electrons)




