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Summary: The discovery of giant planets orbiting close to their host stars was one of
the most unexpected results of early exoplanetary science.Astronomers have since found
that a significant fraction of these ‘Hot Jupiters’ move on orbits substantially misaligned
with the rotation axis of their host star. We recently reported the measurement of the spin-
orbit misalignment for WASP-79b by using data from the 3.9 m Anglo-Australian Telescope.
Contemporary models of planetary formation produce planets on nearly coplanar orbits with
respect to their host star’s equator. We discuss the mechanisms which could drive planets into
spin-orbit misalignment. The most commonly proposed beingthe Kozai mechanism, which
requires the presence of a distant, massive companion to thestar-planet system. We therefore
describe a volume-limited direct-imaging survey of Hot Jupiter systems with measured spin-
orbit angles, to search for the presence of stellar companions and test the Kozai hypothesis.

Keywords: planets and satellites: dynamical evolution and stabilitystars: individual (WASP-
79) techniques: radial velocities and direct imaging

Introduction

Exoplanetary science is possibly the most exciting and rapidly developing branch of modern
astronomy. Just over 1000 planets1 have been discovered to date, mainly through radial
velocity and transit searches. A detailed discussion of thevarious methods used to detect
exoplanets is beyond the scope of this paper, but for more information, we direct the interested
reader to [1]. In addition to finding new planets, a detailed analysis of their structure,
composition, and other bulk properties is needed to understand the processes involved in
their formation and migration. It is possible to probe theseprocesses by measuring the
sky-projected spin-orbit alignment (or obliquity) of exoplanetary systems. This is the angle
between the planetary orbital plane and the spin vector of the host star. This is done through
spectroscopic measurements of the Rossiter-McLaughlin effect (first measured for eclipsing
binaries ([2],[3]) and since extended to exoplanets [4] including the recently measured planet
WASP-79b [5]). The observed effect is caused by the modification of the stellar spectrum
as a transiting planet occults a small region of the stellar disk of its host star, causing a
radial velocity anomaly, due to asymmetric distortions in the rotationally broadened stellar
line profiles [6].

1http://exoplanet.eu, as of 2014 January 15. There is some debate on the fraction of planets that truly exist. The other
main online exoplanet database, http://exoplanets.org/,list the total confirmed planets at just 763 as of 2014 January15.

http://arxiv.org/abs/1403.0652v1
http://exoplanet.eu
http://exoplanets.org/


The radial velocity anomaly is sketched in Figure 1. For prograde orbits, a planet will
first transit across the portion of its host star’s disk that is rotating towards the observer (i.e.
blue-shifted), blocking light from that hemisphere. This results in the observer receiving a
greater fraction of the total flux of the star from the hemisphere that is rotating away (red-
shifted) from the observer than that rotating towards the observer. The blue-shifted portion
of the rotationally broadened stellar lines will appear to have less absorption, resulting in
the line profile centroids being red-shifted and a positive radial velocity anomaly. A negative
velocity anomaly will occur during the second half of the transit as the planet moves across
the hemisphere rotating away from the observer. For retrograde orbits, a planet will transit
across the red-shifted hemisphere first, resulting in the inverse velocity anomaly. By measuring
the shape and magnitude of the Rossiter-McLaughlin effect,it is possible to determine the
inclination of a planet’s orbit relative to the spin axis of its host star.

Giant planets are thought to form within the proto-planetary disk that surrounds a protostar
through the core-accretion process [7]. This model predicts that Jovian planets should form
several AU2 away from the protostar where the proto-planetary disk is sufficiently cool for
icy volatiles to exist and to slowly accrete into planetesimals. The planetesimals continue to
accrete material, growing until they reach a critical mass of ∼ 5 − 10 M⊕, at which point
they rapidly accrete gas from the surrounding disk. This leads to the formation of a large
gaseous envelope of hydrogen and helium. Accretion halts and planet formation comes to an
end once the gas in the local disk is exhausted or blown away bythe protostar as it reaches
the main sequence phase ([7],[8]).

There are two complicating factors to this simple model of planet formation. First, gas
giant planets are found well inside 1 AU where they cannot have formed in situ, implying
that they must have migrated in from their birthplaces (i.e.disk migration [9]). Secondly,
many Hot Jupiters at small orbital radii are observed to be inspin-orbit misalignment [10].
This is unexpected as the proto-planetary disk from which planets form should be well aligned
with the plane of the protostar’s equator (e.g., [6]; [11]),suggesting that either the migration
process, or post-migration evolution of the planet’s orbit, has driven planets into spin-orbit
misalignment. Several mechanisms have been proposed to produce these anomalies, such as
Kozai resonances [12], secular chaos [13], and planet-planet scattering [14].

To date, of the 74 planetary systems3 with measured obliquities, 33 show substantial
misalignments (> 22.5◦), 10 of which are in nearly polar orbits, and 7 are in retrograde
orbits. With such a large fraction of planets in spin-orbit misalignment, there is a clear need
to understand the physical mechanisms that are producing these systems.

Spin-Orbit Misalignment of WASP-79b

WASP-79b is a bloated Hot Jupiter that was recently discovered through the Wide Angle
Search for Planets (WASP) [15]. We determined the spin-orbit misalignment of WASP-79b
through spectroscopic measurements of the Rossiter-McLaughlin effect, using high-precision
radial velocity observations taken during the transit on the night of 2012 December 23, using

2An astronomical unit, or AU, is a standard unit for measuringdistances in astronomy. 1 AU is slightly less than 150
million kilometers, and is approximately the mean distancebetween the Earth and the Sun.

3This study has made use of René Heller’s Holt-Rossiter-McLaughlin Encyclopaedia which was last updated on 2013
November; http://www.physics.mcmaster.ca/∼rheller/index.html

http://www.physics.mcmaster.ca/~rheller/index.html


Fig. 1: Top: Artist’s impression of a transiting planet on a prograde and a retrograde orbit
(for clarity, the motion of the planet across its host star isthe same for both prograde and

retrograde orbits while the rotation direction of the star is reversed for the retrograde
orbit). The stellar hemisphere shaded blue represents the side rotating towards the observer

with its light blue-shifted. The stellar hemisphere shadedred represents the side rotating
away from the observer with its light red-shifted.

Bottom: The modeled radial velocities for the two orbits showing the differing
Rossiter-McLaughlin effect as a planet transits across thedisk of its host star.

the CYCLOPS24 optical-fiber bundle system feeding the UCLES eschelle spectrograph on the
Anglo-Australian Telescope at Siding Spring Observatory.Raw spectra were reduced using
custom routines developed by the authors and were wavelength calibrated from a thorium-
argon observation taken at the beginning of the night and from thorium-xenon spectra taken
using the simultaneous calibration fiber during each objectexposure [5]. We used the IRAF5

task, fxcor, to compute radial velocities by cross-correlation with a spectrum of a bright
template star (HD86264) of similar spectral type. Details on the reduction and data analysis
of WASP-79 can be found in [5].

We developed the Exoplanetary Orbital Simulation and Analysis Model (ExOSAM) to fit
our radial velocities of WASP-79b with a model of the Rossiter-McLaughlin effect using
the Hirano et al. analytical approach [16]. The best-fittingvalues for the projected spin-orbit
angle,λ, and the projected stellar rotational velocity,v sin i⋆

6, along with the uncertainties in
these parameters were derived using a grid search and minimizing χ2 between the observed
radial velocities and modeled radial velocities [5].

Two solutions for the stellar parameters of WASP-79 have been derived from photometric

4http://www.phys.unsw.edu.au/∼cgt/CYCLOPS/CYCLOPS2.html
5IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of

Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
6v is the absolute rotational velocity of the star andi⋆ is the inclination of the star’s rotational axis to the observers line

of sight

http://www.phys.unsw.edu.au/~cgt/CYCLOPS/CYCLOPS_2.html


Table 1: The relevant system parameters of WASP-79 as a main sequence and evolved
star. The full listing of system parameters for WASP-79 can be found in [5]. Here, ms
denotes the model that assumes WASP-79 to be a main sequence star, while non-ms

denotes the model that assumes it is instead an evolved star.

Parameter Value (ms) Value (non-ms)

Parameters as given by Smalley et al. (2012)

Mid-transit epoch (2400000-HJD),T0 56285.03589 ± 0.00200 56285.03739 ± 0.00300
Orbital period,P 3.6623817 ± 0.0000050 d 3.6623866 ± 0.0000085 d
Semi-major axis,a 0.0539 ± 0.0009 AU 0.0535 ± 0.0008 AU
Orbital inclination,i 85.4 ± 0.6◦ 83.3 ± 0.5◦

Impact parameter,b 0.570 ± 0.052 0.706 ± 0.031
Transit depth,(RP /R⋆)

2 0.01148 ± 0.00051 0.01268 ± 0.00063
Orbital eccentricity,e 0.0 (assumed) 0.0 (assumed)
Stellar mass,M⋆ 1.56 ± 0.09 M⊙ 1.52 ± 0.07 M⊙

Stellar radius,R⋆ 1.64 ± 0.08 R⊙ 1.91 ± 0.09 R⊙

Planet mass,MP 0.90± 0.09 MJ 0.90± 0.08 MJ

Planet radius,RP 1.70± 0.11 RJ 2.09± 0.14 RJ

Parameters determined from model fit using our velocities

Projected obliquity angle,λ −106+19

−13

◦ −84+23

−30

◦

Projected stellar rotation velocity,v sin i⋆ 17.5+3.1

−3.0 kms−1 16.0+3.7

−3.7 kms−1

data [15] – one with WASP-79 on the main sequence (R⋆ = 1.64 ± 0.08 R⊙) and one with
it evolved just off the main sequence (R⋆ = 1.91 ± 0.09 R⊙). This results in two sets of
solutions for the various other system parameters including λ andv sin i⋆ which are given in
Table 1. Our results for the projected spin-orbit alignmentand stellar rotation velocity, using
the main sequence parameters, areλ = −106

+19
−13

◦ andv sin i⋆ = 17.5+3.1
−3.0 kms−1. For the non-

main sequence case,λ = −84
+23
−30

◦ and v sin i⋆ = 16.0+3.7
−3.7 kms−1. In both cases, WASP-79b

is in a significantly misaligned orbit.

The main sequence solution appears to be the most likely one [15], as the main sequence
lifetime of a star is significantly longer than its post-mainsequence lifetime [17]. Since
photometric data neither prefers the main sequence or the evolved solution for WASP-79,
and given that a star is far more likely to be observed on the main sequence, we focus on the
main sequence solution. Figure 2 shows the velocity anomalyfor the main sequence solution
with the observed velocities over-plotted on the left. A positive hump-shaped anomaly due
to the Rossiter-McLaughlin effect is clearly apparent in our velocities. This implies that the
planet must be in a nearly polar orbit and transits across only the blue-shifted hemisphere (or
the side rotating toward us) as depicted in the illustrationon the right side of figure 2.

Observed Trends of Systems in Spin-Orbit Misalignment

One early trend observed for planetary systems with measured obliquities is that planets
in spin-orbit misalignment tend to orbit hot stars withTeff ≥ 6250 K while planets in spin-
orbit alignment tend to orbit cooler stars withTeff < 6250 K [18]. The correlation between
spin-orbit misalignments and stellar effective temperature may be related to the thickness of
the stellar convective zone, since it has been proposed thatthe convective zone could act to
dampen orbital obliquities over time through enhancing planet-star tidal interactions [18]. Hot
stars have a thin convective layer and are expected to have very long obliquity dampening
timescales, typically orders of magnitude longer than the main sequence lifetime of the star.



Fig. 2: Left: Spectroscopic radial velocities of the WASP-79b transit taken on 2012
December 23 using the CYCLOPS2 fiber-bundle on the Anglo-Australian Telescope [5].
Velocities from just before, during, and after the transit are plotted as a function of time
along with the best fitting model (for the main sequence parameters) and corresponding
residuals. The filled blue circles with red error bars are velocities we measured with our

estimated uncertainty. The two black circles with an x and with blue error bars are
previously published velocities using the quoted uncertainties [15].

Right: Artist impression of the WASP-79b polar orbit. Imagecredit: Brett Addison (modified
version of the original artist impression of the WASP-8b retrograde orbit by ESO/L.

Calçada).

On the other hand, stars cooler than6250 K have much shorter obliquity dampening timescales
that are fractions of the main sequence lifetime.

This interpretation of the dichotomy observed for aligned and misaligned systems has been
supported by a new study [10], which measured the spin-orbitalignments for 14 new systems
and computed the obliquity dampening timescales for these systems and for 39 previously
published systems. A positive correlation was found between obliquity and stellar temperature
as well as a positive correlation between obliquity and the timescales for dampening obliquity.
The reasoning for this observed correlation is similar to that of an earlier study [18].

Recent studies of multi-planet transiting systems have revealed low stellar obliquities for
five systems [19] and a high obliquity in one system [20]. The study on low stellar obliquity
systems that were known at the time of [19] publication (shortly before the high obliquity sys-
tem was announced [20]) suggested that the migration mechanism(s) responsible for producing
Hot Jupiters is fundamentally different from the mechanism(s) producing compact close-in
multi-planet systems [19]. The [19] study proposes that multi-planet systems likely migrated
due to disk-planet interactions while Hot Jupiters experienced dynamical perturbations during
migration from Kozai resonances or planet-planet scattering.

This view has been challenged by the discovery of a significant spin-orbit misalignment
(true obliquity angleψ > 37◦) for the Kepler-56 multi-planet system [20]. This result
illustrates that spin-orbit misalignments are not restricted to Hot Jupiter systems. The presence



Fig. 3: Projected orbital obliquity as a function of stellareffective temperature [10]. The
filled red circles with red error bars are for stars that have temperatures higher than

6250 K. The blue unfilled circles with blue error bars show stars with effective temperatures
lower than6250 K. The circles that are half red and blue show stars that have measured
effective temperatures consistent with6250 K from the1σ interval. Systems which harbor
planets with masses< 0.2MJ or orbital periods longer than 7 days are shown by a black

circle with a black dot in the middle and black error bars. WASP-79b has been included in
this figure.

of an additional massive body (planet, brown-dwarf, or low mass star) in a wide orbit has
been detected from radial velocity measurements which reveal a long term systematic trend
[20]. The high stellar obliquity and the presence of a third companion is interpreted as
evidence for a scenario in which torques from the outer massive companion drive the inner
planets into co-planer orbits that are misaligned with the spin-axis of the host star [20]. It is
unlikely that the high obliquity of Kepler-56 is due to the Kozai resonances or planet-planet
scattering. Whether a similar scenario to the one proposed for Kepler-56 is responsible for
spin-orbit misalignments seen in Hot Jupiters is yet to be determined. Therefore, measuring the
obliquities of multi-planet systems is key to determining if such misalignments are common
or rare, and whether the mechanism(s) driving misalignments are similar to or different from
Hot Jupiters.

We calculated the tidal dissipation timescale for WASP-79b[5] to test its consistency
with the overall trends that have been observed for other systems. Using either of the two
methods presented in [10], we found that the tidal dissipation timescale for WASP-79b is
betweenτmcz = 1.6 × 1011 yr to τRA = 3.3 × 1015 yr, which is longer than that calculated
for 80% of the systems examined in [19]. WASP-79 has an effective temperature ofTeff =

6600 ± 100K, which is above theTeff > 6250K threshold claimed for planetary systems
displaying high orbital obliquities and consistent with the very long tidal dissipation timescale
we have calculated for this system. Figures 4 and 5 show the projected orbital obliquity of
WASP-79b and those planets presented in [10] as a function ofthe effective stellar temperature
and the relative tidal-dissipation timescale, respectively.



Fig. 4: Projected orbital obliquity as a function of the relative alignment timescale for stars
with either convective (CE) or radiative envelopes (RA) calibrated from binary studies [19].
The same symbols are used as in Figure 3 with the addition of multiple transiting planets,

indicated by the dark black borders. Systems with measured projected obliquity (λ) are
shown as circles while stellar inclinations (i⋆) are shown as squares. We have calculated

the tidal-dissipation timescale for WASP-79b and include it in this figure.

Mechanisms Driving Spin-Orbit Misalignments

Several mechanisms have been proposed to explain the spin-orbit misalignments observed
in many Hot Jupiter systems. These include disk only migration, dynamical mechanisms such
planet-planet scattering, secular chaos, Kozai resonances, or some combination of these during
or post-disk migration [21]. Additional scenarios for producing misalignments include stellar
internal gravity wave modulation and primordial circumstellar disk misalignments.

Disk migration was one of the earliest and most widely accepted mechanisms invoked to
explain the origin of Hot Jupiters [22]. It is understood that gas giant planets form several AU
from their host star. However, interactions with the circumstellar disk during and after their
formation can induce type 1 and type 2 inward migration [23].In type 1 migration, planets
produce spiral density waves in the circumstellar disk, which results in non-zero tidal torques
that drive them inward [23]. Planets more massive than about10M⊕ will quickly clear a
gap in the circumstellar disk as they migrate, leading to a transition from type 1 to type 2
migration. Type 2 migration involves the exchange of angular momentum between the planet
and the disk as material from the disk enters the gap [23]. If Hot Jupiters are exclusively
the result of type 1 and type 2 disk migration, one would expect that their orbits to be well
aligned with the stellar spin axis of their host star [9]. This, however, is simply not the case
as nearly45% of Hot Jupiters show significant spin-orbit misalignments7.

The standard disk migration model may also play a role in the production of misaligned Hot
Jupiters, if the spin-orbit misalignments are the result ofthe internal gravity wave mechanism
altering the orientation of the spin-axis of the host star ([24]; [25]). This model predicts that
internal gravity waves are generated at the boundary between the convective core and radiative
envelope in relatively hot and massive stars. These waves transport angular momentum

7This study has made use of René Heller’s Holt-Rossiter-McLaughlin Encyclopaedia which was last updated on 2013
November; http://www.physics.mcmaster.ca/∼rheller/index.html

http://www.physics.mcmaster.ca/~rheller/index.html


outwards towards the surface of the star, causing the surface to rotate at a different speed, and
even in a different direction than the interior. Furthermore, the waves themselves can vary
over time causing changes in the rotation speed and direction of the stellar surface. While this
model does seem to produce systems in spin-orbit misalignment, it has not been determined
whether the distribution of obliquities it produces matches the observed population of Hot
Jupiters. Other critical tests of this hypothesis include the measurement of time variations in
spin-orbit alignments which the internal gravity wave model predicts will occur on timescales
of as little as 9 to 1000 rotational periods ([24]; [25]). In addition, measuring the obliquities
of multi-planet systems around hot stars with the same misalignments would provide strong
evidence for the internal gravity wave model and disfavor dynamical mechanisms. This is
because the observed misalignments would be created through changes in the star’s spin-axis
and would result in all of the planets in a multi-planetary system having nearly co-planar
orbits. Misalignments produced through dynamical mechanisms would result in planets on
various orbital planes and with different observed obliquities.

An additional scenario in which disk migration will play a key role in producing misaligned
Hot Jupiters is through the primordial misalignments of proto-planetary disks [26]. It has
been shown that short period misaligned planetary orbits can be the natural product of
disk migration in binary systems if the disk is misaligned. If the orbit of a distant stellar
companion is inclined by at least45◦ to the plane of the disk, then gravitational torques from
the companion will drive the disk into misalignment with thespin-axes of its host stars [26].
Planets forming from such a disk will have misaligned orbits. Finding stellar companions
around misaligned systems and determining the distribution of obliquities produced by this
model will test the validity of this mechanism.

A non-disk migration mechanism proposed for driving spin-orbit misalignments is planet-
planet scattering. If there were two or more planets in a multiple planet system in initially
unstable orbits, strong gravitational perturbations between them during close encounters can
lead to the ejection of one or more planets and the inward migration of the surviving
planets. The planets that migrate inwards will have their orbital eccentricity and obliquity
increased until tidally circularized if the periastron distance reaches to within a few stellar
radii [14]. This mechanism is a leading candidate for explaining the occurrence of giant
planets in highly eccentric orbits and has had some success in reproducing the incidence
and distribution of these planets as well as the architecture of the Solar System [27]. Solar
System dynamics studies using the NICE model have revealed that Jupiter, Saturn, Uranus, and
Neptune have experienced planet-planet scattering episodes in the early history of the Solar
System approximately60 My to 1.1 Gy [28]. The NICE model has been able to explain the
distribution of the Kuiper belt objects and the outward migration of Uranus and Neptune
through planet-planet scattering. It is widely believed that the giant planets of the early
Solar System formed on circular and coplanar orbits that were packed significantly closer
together (5.5 –14 AU compared to19 AU and 30 AU for present day locations of Uranus
and Neptune respectively [28]). The initially stable orbits of the Solar System giant planets
became destabilized when Jupiter and Saturn crossed their mutual 1:2 mean-motion resonance.
This increased their eccentricity slightly allowing the eccentricities of Uranus and Neptune to
increase to the point where they had close encounters with each other and migrated outward
to their present day locations [28]. The NICE model thus highlights the importance of planet-
planet interactions in shaping the Solar System into the architecture we see today and is likely
involved in the diversity of observed exoplanetary orbits.Planet-planet scattering does have
some shortcomings. The primary shortcoming of this mechanism is that the scattering process
tends to be quite violent and sudden, which impedes the ability of slow processes such as



tides to halt the inward migration of planets into their hoststar [21].

Secular chaos is another non-disk migration mechanism where planetary orbits evolve over
long timescales (significantly longer than the orbital periods of the planets) due to small
gravitational interactions that occur in systems that havethree or more well-spaced planets
that (generally) are not in strong mean-motion-resonances[29] (though secular effects can
occur for some objects trapped in mean-motion resonances [30]). The inner most planet in
such a system will lose angular momentum (but not orbital energy) to an outer planet that will
drive its pericenter towards the star as its eccentricity increases while at the same time increase
its orbital obliquity [13]. Tidal circularization will then dampen the eccentricity, creating a
Hot Jupiter. One success of this model is that it correctly predicts the 3-day orbital period
pile-up observed for Hot Jupiters ([13]; [29]). Despite themodel’s success in this prediction,
it hardly produces planets with obliquities> 90◦ and no planets in retrograde orbits [29],
counter to the observed population of Hot Jupiter obliquities.

Kozai resonance is the most commonly adopted mechanism to explain planetary systems
in spin-orbit misalignment. This mechanism involves the gravitational interaction between
a planet and an outer stellar companion that has an orbit thatis highly inclined relative to
the orbital plane of the planet and is orbiting at large separations (up to several hundred
AU though small separations are also possible [31]) from thecentral star. The gravitational
interactions between the two objects induce Kozai oscillations which increases the inclination
and decreases the eccentricity for one object while the other object’s eccentricity increases
and its inclination decreases. Eccentricity and inclination are therefore anti-correlated during
Kozai cycles and are described by the Kozai integral [31]IK

IK =
√
1− e2 cos i (1)

which remains constant through this process. If the eccentricity of the planet increases to the
point were its periastron distance is only a few stellar radii from its host star, it will raise
tides on its host star’s surface. This will cause the semi-major axis to shrink and orbit to
circularize through tidal dissipation during periastron passages [32].

It has been found that∼ 30% of the observed Hot Jupiter population and up to100% of the
misaligned systems could be produced through this mechanism from modeling the dynamical
effect of Kozai resonances on Jupiter-like planets from distant stellar companions [33]. It
is also one of only two migration mechanisms (the other beingsecular chaos) which can
naturally explain the 3-day orbital period pile-up observed for Hot Jupiters [13]. If indeed the
Kozai mechanism were responsible for the spin-orbit misaligned systems, one would expect
to find stellar or massive substellar companions to most if not all of them. Additionally, it has
been found that the formation of Hot Jupiters through the Kozai mechanism is significantly
suppressed for close binaries compare to the efficiency for more distant stellar companions
(> 500 AU) [33]. This conclusion is also in agreement with the observational evidence
which suggests that Hot Jupiter systems in close binaries (< 100 AU) are less common [34].
Therefore, searching for distant stellar companions, as described in the next section, will
provide an important test of this mechanism.

A Test for the Kozai Mechanism: Searching for Stellar Companions

Direct imaging surveys of systems with measured spin-orbitalignments can provide a
critical test of the hypothesis that misalignments are driven by the Kozai mechanism. With



current technology, it is feasible to survey a substantial sample of nearby stars (d ≤ 250 pc)
for the presence of stellar and substellar companions at separations as small as∼ 100 AU. If
companions are found preferentially in systems with misaligned Hot Jupiters (as opposed to
systems with aligned Hot Jupiters), then the Kozai hypothesis will have substantial support
as the dominant driver of these misalignments.

Companions can be sought using two obvious techniques. One way is through their radial
velocity impacts on the host star, similar to radial velocity searches for exoplanets. A caveat
of this method is that the timescales required to detect companions orbiting beyond5 AU is
greater than10 yr. This is not very feasible for finding long period companions in a reasonable
time frame. Alternatively, the method we are proposing is tosearch for companions through
direct imaging surveys. With the exception of the closest stars, companions at separations of
less than∼ 100 AU will be difficult to detect due to the achievable contrast being insufficient
for detecting faint companions. Despite this limitation, it is thought that stellar companions are
not likely to reside in orbits less than100−500 AU in systems with giant planets ([33]; [34])
as stellar companions can significantly retard planetesimal accretion ([35]; [36]). However,
other studies have shown that perturbations from moderately close-in massive companions
are usually not strong enough to fully halt accretion ([37];[38]). Therefore giant planets are
expected to be less frequent (but not completely absent) around binaries with separations
of less than100 AU [36]. If systems with Hot Jupiters do host stellar or substellar mass
companions, they should lie far enough away from the host star to be detectable. In this way,
a survey such as the one we are pursuing will determine whether stellar companions are the
cause of the observed spin-orbit misalignment of Hot Jupiter systems and in turn the validity
of the Kozai mechanism.

The contrasts required to detect companions with masses as low as mid M-dwarf and
with separations as small as0.5" around solar type stars (i.e. G stars) is> 102 in the Ks-
band (∼ 2000− 2400 nm). Even higher contrasts (> 103) will be necessary to detect fainter
companions (such as late M-dwarf or early L-dwarfs) around solar type stars and to detect
companions around more massive and brighter F-type stars. These requirements are readily
achievable with current technology. Therefore our group ispursuing a survey of nearby stars
(d ≤ 250 pc) with measured spin-orbit alignments in the southern hemisphere using the
Magellan Adaptive Optics (MagAO) and Clio2 infrared camerainstruments on the6.5 m
Magellan Telescope at the Las Campanas Observatory in Chile. The MagAO system can
achieve contrasts of∼ 104 (∆Ks = 10) at 0.5" and∼ 105 (∆Ks = 12.5) at 1.0" (private
communication L. Close) in the Ks-band (better than other similar surveys [35], [39], [40]),
that will conclusively confirm or reject the presence of stellar mass companions at separations
greater than150 AU in our sample.

Other groups are also searching for stellar companions around nearby stars. One such group
is the VLT/NACO Search for Stellar Companions to 130 Nearby Stars with and Without
Planets survey [35]. They are using the Nasmyth Adaptive Optics System (NAOS) with
the Near-Infrared Imager and Spectrograph (CONICA) instruments on the8.2 m Very Large
Telescope (VLT) in Cerro Paranal, Chile to search for companions around southern hemisphere
stars and the PUEO adaptive optics imager on the3.6 m Canada-France-Hawaii Telescope
(CFHT) on top of Mauna Kea, Hawaii to search for companions around northern hemisphere
stars. Their survey is capable of detecting stellar companions down to M5 dwarfs at0.2" and
early L-dwarfs (brown dwarfs) at0.2". Other groups are using the Lucky Imaging technique
to search for companions in the SDSSi’ band with the LuckyCam camera on the2.56 m
Nordic Optical Telescope [39] and in thez’ band with the AstraLux Norte imaging instrument



on the Calar Alto2.2 m telescope and the AstraLux Sur imaging instrument on the ESO 3.5 m
New Technology Telescope at La Silla, Chile [40].

Compared to other surveys, ours is unique in that it is the only one that is specifically target-
ing systems with measured spin-orbit alignments and is directly testing the Kozai mechanism
for producing the observed misaligned Hot Jupiters. We alsohave a key advantage over other
surveys as we will be able to achieve higher contrast that will enable us to detect fainter
companions.

Conclusions

We have presented results revealing that the transiting HotJupiter WASP-79b is in sig-
nificant spin-orbit misalignment. We find that the projectedangle between the spin-axis of
the host star and the orbital plane of WASP-79b isλ = −106

+19
−13

◦, making its orbit nearly
polar. WASP-79b joins the growing population of Hot Jupiters that have been found to exhibit
significant spin-orbit misalignments. Several mechanismshave been proposed for producing
Hot Jupiters with high obliquities. These include disk migration [9], Kozai resonances [12],
secular chaos [13], planet-planet scattering [14], primordial misalignments of proto-planetary
disks [26], and internal gravity wave modulation of the stellar surface of host stars [24]. The
jury is still out on which mechanism(s) are responsible for producing spin-orbit misalignments.
An expansion of the sample of systems with measured obliquities, in particular multiple
planet systems, will allow astronomers to determine the dominant mechanisms that produce
such misalignments. Systems suitable for Rossiter-McLaughlin effect follow-up observations
will come from globally distributed ground-based transit searches such as HATSouth [41],
the recently announced Kepler space telescope K2 mission [42], and new space-based all-
sky transit surveys like the Transiting Exoplanet Survey Satellite (TESS; [43]). Finally, we
propose a test for the hypothesis that the majority of misaligned Hot Jupiter systems were
produced by Kozai resonant behavior resulting from perturbations by as-yet undiscovered
binary companions to the planet host stars.
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